Introducing Parallel Agents - Run multiple /agent queries simultaneously. Read more →

How to extract only main content of text from a web page?

TL;DR

Main content extraction strips away navigation, ads, footers, and scripts to isolate core text. Approaches include DOM heuristics that identify content-dense areas and AI-powered extraction. Firecrawl's onlyMainContent option returns clean markdown without boilerplate—ideal for AI applications and RAG systems.

How to extract only main content of text from a web page?

Web pages contain far more than their primary content. A news article includes menus, related links, ads, and footers. For AI training, search indexing, or content analysis, only the article matters.

The DOM structure provides clues: high text density and low link density indicate content; many packed links suggest navigation. Semantic tags like <article> and <main> help identify primary content.

Firecrawl handles this automatically:

result = app.scrape_url("https://example.com/article", {
    "formats": ["markdown"],
    "onlyMainContent": True
})

For LLMs, this matters significantly—clean content focuses model attention on relevant information instead of wasting tokens on navigation.

Key Takeaways

Main content extraction isolates core text by removing boilerplate. Firecrawl extracts main content automatically, returning clean markdown ready for AI processing without custom extraction logic.

Last updated: Feb 09, 2026
FOOTER
The easiest way to extract
data from the web
. . .. ..+ .:. .. .. .:: +.. ..: :. .:..::. .. .. .--:::. .. ... .:. .. .. .:+=-::.:. . ...-.::. .. ::.... .:--+::..: ......:+....:. :.. .. ....... ::-=:::: ..:-:-...: .--..:: ......... .. . . . ..::-:-.. .-+-:::.. ...::::. .: ...::.:.. . -... ....: . . .--=+-::. :-=-:.... . .:..:: .:---:::::-::.... ..::........::=..... ...:-.. .:-=--+=-:. ..--:..=::.... . .:.. ..:---::::---=:::..:... ..........::::.:::::::-::.-.. ...::--==:. ..-::-+==-:... .-::....... ..--:. ..:=+==.---=-+-:::::::-.. . .....::......:: ::::-::.---=+-:..::-+==++X=-:. ..:-::-=-== ---.. .:.--::.. .:-==::=--X==-----====--::+:::+... ..-....-:..::-::=-=-:-::--===++=-==-----== X+=-:.::-==----+==+XX+=-::.:+--==--::. .:-+X=----+X=-=------===--::-:...:. .... ....::::...:-:-==+++=++==+++XX++==++--+-+==++++=-===+=---:-==+X:XXX+=-:-=-==++=-:. .:-=+=- -=X+X+===+---==--==--:..::...+....+ ..:::---.::.---=+==XXXXXXXX+XX++==++===--+===:+X+====+=--::--=+XXXXXXX+==++==+XX+=: ::::--=+++X++X+XXXX+=----==++.+=--::+::::+. ::.=... .:::-==-------=X+++XXXXXXXXXXX++==++.==-==-:-==+X++==+=-=--=++++X++:X:X+++X+-+X X+=---=-==+=+++XXXXX+XX=+=--=X++XXX==---::-+-::::.:..-..
Backed by
Y Combinator
LinkedinGithubYouTube
SOC II · Type 2
AICPA
SOC 2
X (Twitter)
Discord